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Abstract: Increasing the lifetime of Wireless Sensor Network remains a prime concern in its design and 

implementation.  The problem is addressed through various techniques for optimizing the data compression techniques 

and the routing protocols.  Conventional compression techniques require combined optimization of data compression 

and routing protocol to obtain increased efficiency. Compressive Sampling theory allows to decouple the data 

compression and routing.  Hence increased compression ratio itself improves the throughput of the wireless sensor 

network system.  This paper is a survey on Compressed Sensing techniques which uses the alternate sparse sample 

domain to which the original data can be transformed. 
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I.  INTRODUCTION 
Wireless Sensor Networks(WSN) are densely  packed sensor nodes which cooperatively transmit the data acquired by 

the sensor nodes to  a base station.  The network formed by the sensors  is a self organizing adhoc system.  The sensor 

network is constituted of various small low cost devices with backup power supply.  Wireless Sensor Networks are 

deployed in isolated environments where human interference is less or not possible at all.  The geographical area 

covered by entire network demands multiple hop transmission from sensor to the base station.  Hence backup power 

consumption becomes the prime criterion which determines the lifetime of the WSN.  In a WSN, power consumption 

can be optimized by optimizing both data compression  and the routing protocols.  Data Compression in the WSN is  

categorized into  Conventional data Compressing method and Compressive Sensing(CS) method. The Conventional 

data compressing method utilizes  the correlation  in data during  encoding and requires an explicit data communication 

among sensors.   Joint entropy coding approach proposed by Cristescu et al.[6]  uses conditional entropy to reduce the 

number of bits used to encode data .  Ciancio et al .1[7] and A ́imovi ́ et al . [8]  propose a compressive  piece-wise 

smooth data through distributed wavelet transform .  In this method every node transmits its reading to every other 

node.  Each odd node calculates high pass coefficients and each even node calculates low pass  coefficients.   We can 

see that in the conventional compression methods  the compression techniques need to communicate their data to other 

nodes for compression.  This communication is  in addition to the data transmission towards  the base node.   This 

clearly shows that the optimization in the conventional method is  obtained by  joint optimization of the compression  

technique and the routing protocol.   Hence the performance of the compression depends  on the   joint optimization of 

the compression  technique and the routing protocol  which is an NP hard problem. Compressive Sensing on the other 

hand reduces the global data traffic and distributes energy consumption evenly to lengthen the network life time.   

Compressive sensing decouples compression and the routing in the sensor network, hence they can be separately 

optimized.  Compressive sensing  sampling theory[9][10][11]  allows the use of simple encoding process, saves inter 

data exchange and can deal with abnormal sensor readings.  CS data gathering techniques transmit sensor reading 

jointly  rather than separately.  In CS data, reconstruction is not sensitive to packet loss.  Thus  Compressed Sensing 

data gathering techniques are promising solutions to  data aggregation in WSN. This paper is a survey on compressed 

sensing data gathering techniques. Section II discusses   the conventional compressed data gathering with an example.  

From Section III onwards CS technique which exploits the correlation among the data, is discussed.    It transforms the 

original data set to another domain which  sparsely represents the original data. Section IV discusses  the Matrix 

completion method which exploits the low rank matrix recovery theory. Section V discusses  the diffusion wavelet  

technology which allows to find sub network and applies transform on it.  Section VI  discusses  the Matrix 

Factorization which can be used prior to Matrix completion method. 
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II.   COMPRESSIVE DATA GATHERING 
Compressive Data Gathering[1] exploits the correlation between the data in the sensor data set.  The correlated data are 

transmitted to the sink in a combined manner.  The data gathering process of CDG is illustrated through an 

example,Fig.1.1. A small  fraction of the routing tree marked in Fig. 1.1(b) is considered for illustration.  Leaf nodes 

initiate the transmission after acquiring the data.   Node s2 generates a random number φi2, computes  and transmits the 

value   φi2 d2 , to s1 .  The index i denotes the i
th

 weighted sum ranging from 1 to M.  In the same way s4, s5 and s6 

transmit φi4 d4 , φi5 d5 and φi6  d6 to s3 . Upon receiving the values from all the siblings  s3 computes φi3 d3,  and finds 

the sum of all values in hand (φi3d3+ φi4 d4 ,+φi5 d5+φi6 d6) and  transmits  it to s1.  Then s1 computes  φi1d1and 

transmits (φi1 d1+φi2d2+φi3d3+φi4 d4+φi5 d5+φi6 d6+φi6d7+φi7 d7 +φi8d8)  the message containing the weighted sum of all 

readings in a subtree is forwarded to the sink. 

 
Fig.1.1 (a) A typical routing tree in which the sink has four children.   (b) A small fraction of the routing tree marked. 

 

The i
th

 weighted sum can be represented by: 

 

 

 

 

The sink obtains M weighted sums {yi}, i = 1, 2, ...M which can be mathematically represented as 

 

 
This  formula can be applied for both scalar and vector quantity of di.  In the case of di

  
being a vector the yi is also a 

vector of same size. 

 

For a tree with N nodes which collects M measurements,  all nodes send the same number of O(M) messages regardless 

of their hop distance to  the sink.  The overall message complexity is O(NM) which is very much less than the O(N
2

) 

the worst case message complexity of the non compressed message transmission.  CDG reduces global data traffic 

besides decoupling the compression and routing, thereby facilitating separate optimisation.  Disadvantage of this  

technique is that, when M<N,  CDG leaves with solving a set of M linear equations with N unknown variables. 

 

III.   COMPRESSIVE SENSING 
Actual  sensor readings show certain structure because of the spatial or temporal correlations.  Hence a transform 

domain can be identified in which the signal is sparse.  Theory of compressive sampling [9][10][111] states that for a 

sparse discrete signal   given by a vector x  of  size  N, reconstruction of x from M random samples are produced by a 

suitable linear transform φ of x : y = φx where M < N and the measurement matrix  φ is of size     M x N.  Simply 

stated x can be recovered from the observation y if x is sufficiently sparse subject to some precondition on φ. The data 

set acquired from the sensor set are not usually sparse.  But the structure shown by the reading due to spacial or 

temporal correlation allows to transform the data set sparsely into a different domain  x = ψx for some representation 

basis ψ of sixe NxN and s the coefficient vector in the ψ domain with ||s||
0

 = K, where K<< N. Therefore the 
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measurement vector y = φψs.  This meaurement vector can be solved by Linear Programming.  Also  a K-sparse signal 

can be reconstructed from M measurements  with high probability,  if M is such that :  M ≥ c.μ
2
(φ, ψ).K.logN,  where c 

is a positive constant, Φ is the sampling matrix and μ(Φ,Ψ) is the coherence between sampling basis Φ and 

representation basis Ψ 

 

IV.  MATRIX COMPLETION 
Given observations Y  and the measurement matrix φ

MC
 , the low-rank matrix completion problem is stated as follows: 

 

A low rank matrix X (r << LN) of size L x N can be recovered 

[2] from randomly selected entries.  The observation Y = φ
MC 

o X where φ
MC 

is the measurement matrix with 

Φ
MC

(i,j) = 1, if (i,j) entry is selected otherwise 0.  The operator o denotes element  wise product  i.e., Y(i,j) = 

Φ
MC

(i,j)X(i,j).   The defined problem is NP hard,  an effective alternative is the nuclear norm relaxation, given by  

 

where  denotes the nuclear norm, defined as the sum of  all 

singular values.   This requires a prior knowledge of the rank, and the observation Y  contains 

Gaussian noise. 

 

V.   DIFFUSION  WAVELET 
The Classical Wavelet dilates the mother wavelet by the process of 2 to generate a set of wavelet bases.  But the diadic 

dilation generating  diffusion wavelet relies on diffusion operator and  enables multiscale analysis on general structure 

such as manifolds or graphs .  For  an arbirary Graph G with  weighted adjacency  matrix Ω=[w
ij

], the  normalized 

Laplacian Ʌ characterize the degree of correlation under a certain scale.  Λ = [λ
ij

] where  λ
ij =1 

if i=j otherwise
, 

 

 
The range space of  Λ is partitioned to decompose the signal sampled on a graph in a multiscale manner.   A diffusion 

operator o  is constructed from Λ in such a way that the operator and normalized Laplacian Λ share the same 

eigenvector and all eigen values of the operator  o is less than 1.  Applying a fixed threshold to eliminate the reducing 

eigen value and recursively raising o to power of 2, increases the null space and reduces the range space which 

produces space splitting. With proper sparse basis based on diffusion wavelets high-fidelity recovery for data 

aggregated from arbitrarily deployed WSNs can be achieved [3].   Also arbitrary network partitions  can be developed 

and  temporal correlations can be integrated with the spatial ones, which can significantly reduce energy consumption 

while maintaining the fidelity of data recovery. 
 

VI. MATRIX FACTORIZATION 
 The large matrices that appear in modern Machine Learning problems often have complex hierarchical 

structures that go beyond  traditional linear algebra tools, such as  Eigen decompositions.  Multiresolution analysis,  

introduces a new notion of matrix factorization that can capture structure in matrices at multiple   scales. The resulting 

Multiresolution Matrix Factorizations (MMFs) not only provide a wavelet basis for sparse approximation, but can also 

be used for matrix compression  and as a prior for matrix completion. Multiresolution matrices are an alternative to the 

low rank paradigm and in many contexts they better capture the true nature of matrices arising in learning problems.   

Multiresolution matrix factorization (MMF) [4] uncovers soft hierarchical organization in matrices characteristic of 

naturally occurring large networks or the covariance structure of large collections of random variables, without 

enforcing a hard hierarchical clustering. In addition to using MMF as an exploratory tool it can be used for matrix 

compression,        since         each         intermediate 

 
  

is effectively a compressed version of Data Matrix A.  The wavelet basis associated with MMF is a natural basis for 

sparse approximation of functions on a domain whose metric structure is given by Data  Matrix A.  
 

Multiresolution Analysis (MRA) constructs a sequence of spaces of functions of increasing smoothness  by repeatedly 

splitting each Vj  into a smoother part Vj+1, and a rougher part Wj+1  (Figure 5.10. The further we go down this 

sequence, the longer the length scale over which typical functions in Vj  vary, thus, projecting a function to Vj,Vj+1,…  

amounts to resolving it at different levels of resolution. 
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Figure 5.1 

 

Factorization problem focus on how to compresses the matrix A using MRA. The authors  found that by extending each 

ℓ
  matrix to size n x n setting,           

 

the φ
1

Uψ
1 

basis becomes           .  

Therefore, similar to the way that Fourier analysis corresponds to Eigen decomposition, multiresolution analysis 

effectively factorizes A  in the form   

 

 

where each U
ℓ
  orthogonal matrix must be sufficiently sparse. 

 

VII.   CONCLUSION 
Conventional compressing  method requires joint optimisation of routing and compression to achieve improved 

throughput. That is routing and compression are coupled.  Also solving M equation with N variables is an NP hard 

problem. Compressive sensing utilizes the correlation in the sensor data acquired, to transform the data into a sparse 

domain.  Here the mother wavelet is dilated and transformed to analyse the structure shown by the correlated data. 

Matrix completion method exploits the property that a low rank matrix X (r<<LN) of size LxN can be recovered [4] 

from randomly selected entries.   Here prior knowledge of the rank is required and also the  measurement matrix has 

Gaussian noise.  Under multiscale resolution analysis two different methods, the diffusion wavelet and the matrix 

factorization are discussed.   The diadic dilation generating  diffusion wavelet relies on diffusion operator and  enables 

multiscale analysis on general structure such as manifolds or graphs . With proper sparse basis based on diffusion 

wavelets, high-fidelity recovery for data aggregated from arbitrarily deployed WSNs can be achieved [3].  Arbitrary 

network partitions  can be developed and  temporal correlations can be integrated with the spatial ones, which can 

significantly reduce energy consumption while maintaining the fidelity of data recovery. Multiresolution matrices are 

an alternative to the low rank paradigm and in many contexts they better capture the true nature of matrices arising in 

learning problems.  MMF structure may be used as a “prior” in matrix approximation and completion problems,  MMF 

can be used for matrix compression,  The wavelet basis associated with MMF is a natural basis for sparse 

approximation of functions on a domain whose metric struct ure is given by Data  Matrix. 
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